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Recent Arctic sea ice seasonal prediction efforts and forecast skill assess-16

ments have primarily focused on pan-Arctic sea-ice extent (SIE). In this work,17

we move towards stakeholder-relevant spatial scales, investigating the regional18

forecast skill of Arctic sea ice in a Geophysical Fluid Dynamics Laboratory19

(GFDL) seasonal prediction system. Using a suite of retrospective initial-20

ized forecasts spanning 1981–2015 made with a coupled atmosphere-ocean-21

sea ice-land model, we show that predictions of detrended regional SIE are22

skillful at lead times up to 11 months. Regional prediction skill is highly re-23

gion and target month dependent, and generically exceeds the skill of an anomaly24

persistence forecast. We show for the first time that initializing the ocean25

subsurface in a seasonal prediction system can yield significant regional skill26

for winter SIE. Similarly, as suggested by previous work, we find that sea-27

ice thickness initial conditions provide a crucial source of skill for regional28

summer SIE.29
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1. Introduction

Arctic sea ice has undergone rapid changes over the satellite era, characterized by a30

decline in pan-Arctic September sea-ice extent (SIE) of roughly -14% per decade [Serreze31

et al., 2007; Cavalieri and Parkinson, 2012; Stroeve et al., 2014a], substantial thinning32

[Rothrock et al., 1999; Kwok and Rothrock , 2009], a transition from multi-year to first-year33

ice [Rigor and Wallace, 2004; Maslanik et al., 2011], and longer melt seasons [Perovich and34

Polashenski , 2012; Stroeve et al., 2014a]. These striking changes and their implications for35

stakeholders have sparked research interest in the seasonal prediction and predictability36

of Arctic sea ice. Seasonal prediction skill for detrended pan-Arctic SIE has been assessed37

in a number of global climate model (GCM)-based forecast systems. These studies, based38

on suites of initialized retrospective forecasts (hindcasts), report significant forecast skill39

relative to the linear trend at lead times of 1–6 months, depending on the target month40

and model used [Wang et al., 2013; Chevallier et al., 2013; Sigmond et al., 2013; Merryfield41

et al., 2013; Msadek et al., 2014; Peterson et al., 2015; Blanchard-Wrigglesworth et al.,42

2015; Guemas et al., 2016]. Statistical forecast methods have also been shown to skillfully43

predict detrended pan-Arctic SIE at leads times up to 6 months [Lindsay et al., 2008;44

Stroeve et al., 2014b; Schröder et al., 2014; Wang et al., 2016; Yuan et al., 2016; Petty45

et al., 2017].46

In parallel with the development of these quasi-operational dynamical prediction sys-47

tems, a number of “perfect model” studies, which examine how well a model can predict48

itself, have been performed to quantify upper bounds for the forecast skill achievable in49

such systems. These perfect model studies have shown that pan-Arctic SIE is poten-50
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tially predictable at 12–24 month lead times, substantially longer than the current skill51

of GCM-based prediction systems [Koenigk and Mikolajewicz , 2009; Holland et al., 2011;52

Blanchard-Wrigglesworth et al., 2011a; Tietsche et al., 2014; Germe et al., 2014]. Anal-53

ogous to the so-called “quiet revolution” in numerical weather prediction [Bauer et al.,54

2015], closing this prediction skill gap will require improvements in both model physics55

and initial conditions (ICs).56

These studies have defined baselines for the current and potential seasonal forecast skill57

of pan-Arctic SIE. While this body of work represents a crucial first step, its utility is58

somewhat limited for stakeholders, who are primarily interested in sea-ice predictions on59

regional and sub-regional spatial scales. Regional sea-ice predictions are a pressing need60

for a broad stakeholder group, including Northern communities [Ford and Smit , 2004],61

wildlife [Regehr et al., 2007], shipping industries [Smith and Stephenson, 2013; Melia62

et al., 2016; Pizzolato et al., 2016; Laliberté et al., 2016], fisheries [Wyllie-Echeverria and63

Wooster , 1998], and natural resource industries [Jung et al., 2016]. The decline of regional64

SIE is ubiquitous in the Arctic, with statistically significant negative SIE trends in all65

regions except for the Bering Sea, which has a small positive trend that is not statistically66

significant [Cavalieri and Parkinson, 2012].67

Baselines for current and potential regional Arctic SIE prediction skill in dynamical68

forecast systems have yet to be thoroughly established. The study of Sigmond et al.69

[2016] demonstrated skillful predictions of detrended regional ice advance and retreat70

dates, with notably high skill for advance dates in Hudson Bay, Baffin Bay/Labrador Sea,71

and the Chukchi Sea. Krikken et al. [2016] investigated detrended regional sea-ice area72
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predictions (using three initialization months), and found skillful forecasts up to 6-month73

lead times for the Barents/Kara Seas and the Northeast passage region. The work of Day74

et al. [2014a] identified the seasonal-ice zones of the North Atlantic sector as the regions75

with highest potential SIE predictability (at lead times of 1.5–2.5 years). Yeager et al.76

[2015] additionally demonstrated skillful predictions of decadal SIE trends in this sector,77

which they attributed to predictable variations in the Atlantic thermohaline circulation.78

In this work, we present the first comprehensive assessment of regional Arctic SIE pre-79

diction skill within a coupled dynamical prediction system. Using a suite of retrospective80

seasonal forecasts, we examine regional SIE skill in fourteen Arctic regions for all target81

months and lead times of 0–11 months. We study the physical mechanisms underlying82

this regional skill, identifying critical roles for initialization of subsurface ocean tempera-83

ture and sea-ice thickness in regional predictions of winter and summer SIE, respectively.84

Finally, implications for future dynamical prediction systems are discussed.85

2. Methods

2.1. The GFDL Prediction System

This study is based on a suite of retrospective seasonal forecasts spanning 1981–201586

made with one of the Geophysical Fluid Dynamics Laboratory (GFDL) prediction sys-87

tems. The prediction system consists of a fully-coupled atmosphere-land-sea ice-ocean88

GCM with initial conditions (ICs) from a coupled data assimilation system. The forecast89

model is the GFDL Forecast-oriented Low Ocean Resolution [FLOR; Vecchi et al., 2014]90

model, which employs a relatively-high horizontal resolution of 0.5◦ in the atmosphere91

and land components, and 1◦ resolution in the ocean and sea ice components. The sea ice92
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model of FLOR is the Sea Ice Simulator version 1 [SIS1; Delworth et al., 2006]. This model93

uses an elastic-viscous-plastic rheology for the calculation of internal ice forces [Hunke and94

Dukowicz , 1997], an ice-thickness distribution with five thickness categories [Bitz et al.,95

2001], and a three-layer thermodynamic formulation with one snow layer and two ice lay-96

ers [Winton, 2000]. The FLOR prediction system exhibits seasonal forecast skill for a97

diverse set of climate applications, including tropical cyclone activity [Vecchi et al., 2014],98

pan-Arctic SIE [Msadek et al., 2014], surface-air temperature and precipitation over land99

[Jia et al., 2015], and regional sea-surface temperature [SST; Stock et al., 2015].100

The seasonal forecasts are initialized using an Ensemble Kalman Filter coupled Data101

Assimilation system [ECDA; Zhang et al., 2007]. The ECDA system assimilates subsurface102

ocean temperature and salinity data, satellite SST, and atmospheric reanalysis data from103

National Centers for Environmental Prediction. The subsurface ocean data comes from104

the World Ocean Database [Levitus et al., 2013], the Global Temperature and Salinity105

Profile Programme [Sun et al., 2010], and the Argo Program [Roemmich et al., 2004].106

These data sources comprise a wide variety of historical oceanic observations including107

expendable bathythermograph (XBT) data, conductivity-temperature-depth (CTD) data,108

moored buoy data (MRB), mechanical bathythermograph data (MBT), ocean station109

data (OSD; or so called “bottle” data), and autonomous ocean profiles (PFL; since the110

introduction of Argo floats in 2000). Note that ECDA does not directly assimilate any111

sea-ice concentration (SIC) or thickness (SIT) data. The ocean and sea ice ICs are taken112

directly from ECDA, whereas the atmosphere and land ICs are produced via a suite113

of “AMIP-style” atmosphere-land only simulations forced by observed SST and sea ice.114
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This technique is used to initialize the atmosphere and land components because FLOR115

employs a higher resolution in these components than ECDA, which was built on the116

CM2.1 model [Delworth et al., 2006]. The ensemble forecast experiments are initialized117

with a twelve-member ensemble on the first of each month from January 1981 through118

December 2015 and run for one year. This suite of hindcasts allows us to assess the skill119

of this forecast system against nearly all of the available satellite SIC record, which begins120

in November 1978.121

2.2. Forecast Skill Assessment

In this study, we assess the ability of the FLOR prediction system to predict regional122

SIE in the fourteen Arctic regions shown in Fig. 1. The regional domains are chosen123

following the Day et al. [2014a] definitions. We compute prediction skill scores for each124

region, target months from January–December, and lead times from 0–11 months. “Target125

month” refers to the month that we are trying to predict, and “lead time” refers to the126

number of months prior to the target month that the forecast was initialized. We verify127

our predictions against passive microwave satellite SIC observations from the National128

Snow and Ice Data Center (NSIDC). We use monthly-averaged SIC data processed using129

the NASA team algorithm [Cavalieri et al., 1996], and regrid these data from the native130

NSIDC 25km polar stereographic grid onto the 1◦ GFDL sea-ice grid. The regridding was131

performed to avoid systematic SIE biases associated with the different land-sea masks of132

the two grids.133

We assess prediction skill via the anomaly correlation coefficient (ACC). The ACC is134

the Pearson correlation coefficient between the predicted and observed regional SIE time135
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series. The predicted regional SIE is computed in two steps: (1) we compute the ensemble-136

mean predicted SIC; and (2) we compute an areal sum of all gridpoints in the region of137

interest with SIC ≥ 15%. In order to focus on skill relative to the long-term trend, we138

remove a linear trend forecast from the observed and predicted SIE time series before139

computing ACC values. The linear trend forecast is computed using only past data, and140

is updated each year. For the first three hindcast years (1982–1984), we assume a linear141

trend of zero. We test whether the ACC values are significantly greater than 0 using a142

t-test with a confidence level of 95%. The effective number of degrees of freedom for the143

t-test is given by N∗ = 1−r1r2
1+r1r2

N , where N = 34 is the number of years in the timeseries,144

and r1 and r2 are the lag-1 year autocorrelation values for each time series [Bretherton145

et al., 1999]. Using this approach, we compute significance thresholds for each region,146

target month, and lead time. These thresholds vary regionally between 0.29 and 0.38.147

We compare our prediction skill to an anomaly persistence forecast, which is the forecast148

obtained by persisting the observed anomaly of the initial month up to the target month.149

The anomalies in the persistence forecast may be defined relative to either the long-term150

climatology or the long-term linear trend, depending on whether one is assessing skill for151

total anomalies or detrended anomalies, respectively. We also compared our prediction152

skill to a damped anomaly persistence forecast [Van den Dool , 2006]. In terms of ACC,153

anomaly persistence is slightly more skillful than damped anomaly persistence, which154

motivated its use as the baseline forecast in this study.155
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3. Results

3.1. Arctic Regional Prediction Skill

In Fig. 2, we plot the GFDL-FLOR Arctic regional prediction skill for detrended156

SIE. The prediction skill for total anomalies (non-detrended) is higher in all regions (see157

Fig. S1), due to predictability from negative regional SIE trends and the ability of the158

forecast system to capture these trends [Msadek et al., 2014]. The detrended regional SIE159

forecast skill in Fig. 2 generically exceeds that of a persistence forecast (see triangles in160

Fig. 2). This indicates that there are dynamical sources of predictability beyond SIE161

anomaly persistence which this prediction system is able to capture. Interestingly, each162

Arctic region displays a unique correlation structure. These correlation structures are the163

result of three interrelated factors: (1) the inherent predictability of SIE in each region;164

(2) the accuracy of the forecast ICs; and (3) the ability of the model to dynamically165

evolve the IC fields and simulate regional SIE. Below, we highlight some key features of166

the regional SIE predictions.167

Regional prediction skill is notably high for winter predictions of SIE in the North At-168

lantic sector. The Barents and Greenland-Iceland-Norwegian (GIN) Seas have statistically169

significant skill at lead times ranging from 5–9 months for target months of December–170

March (time series of January Barents SIE predictions are shown in Fig. S2). Labrador171

Sea skill is the highest of any region, with significant skill beyond 7 months for target172

months of December–July. These skillful long-lead regional winter predictions correspond173

to forecasts initialized the previous summer and spring, often in months with little sea-174

ice cover. Ahead in Section 3.2, we investigate the sources of skill for these winter SIE175

predictions. In contrast to the North Atlantic sector, the seasonal-ice zones of the North176
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Pacific Sector (the Bering Sea and Sea of Okhotsk) display little prediction skill beyond177

3-month lead times.178

The prediction system also displays significant summer SIE skill in the East Siberian,179

Laptev, Chukchi, and Beaufort Seas (time series of September East Siberian SIE predic-180

tions are shown in Fig. S2). The summer SIE predictions in these regions are skillful at181

lead times of 1–4 months, lacking the long-lead skill of the winter North Atlantic predic-182

tions. The East Siberian, Laptev, and Beaufort Seas each display a barrier of prediction183

skill, in which skill drops off sharply in a certain initialization month. For the East Siberian184

and Laptev seas, this skill barrier corresponds to forecasts initialized before May, whereas185

for the Beaufort Sea, the barrier corresponds to forecasts initialized before June. These186

skill barriers can be identified in the ACC plots as diagonal lines corresponding to initial187

months May and June, respectively. A similar predictability barrier has been identified188

in the work of Day et al. [2014a], which showed that perfect-model forecasts initialized in189

May lose skill more rapidly than forecasts initialized in July. The predictions also have190

skill for summer SIE in the Canadian Archipelago, however this result should be viewed191

cautiously given the coarse model grid and relatively small number of gridpoints in this192

region. We further investigate the sources of summer SIE prediction skill in Section 3.3,193

ahead.194

In addition to skillfully predicting regional SIE minima and maxima, the forecasts also195

have skill in predicting melt season (June-July-August) and growth season (November-196

December) anomalies in Hudson Bay at lead times of 3–11 months. Forecast skill in197
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Baffin Bay, another region that rapidly transitions from being ice-covered to ice-free, is198

substantially lower.199

Pan-Arctic SIE represents the sum total of these diverse regional contributions. The200

FLOR prediction system generally has skill in predicting detrended pan-Arctic SIE at201

lead times of 1-5 months [Msadek et al., 2014]. The month of June is a clear exception202

to this, with low skill even for lead-0 predictions. The pan-Arctic correlation structure203

displays two “lobes” of skill which peak in April and October, following the SIE maximum204

and minimum, respectively (Fig. 2, upper left panel). Skill drops rapidly in the months205

of June and December, which are the months when the ice edge transitions between the206

Central Arctic and the seasonal-ice zones. The persistence forecast also displays a similar207

two-lobe correlation structure (See Fig. S3), with low skill in June, July, November, and208

December, indicating that the FLOR ACC structure is related to the inherent persistence209

of pan-Arctic SIE anomalies. A similar link between persistence and predictability was210

found in the perfect model study of Day et al. [2014a]. Note that FLOR’s low June211

prediction skill is not a generic feature of other dynamical prediction systems (compare212

Fig. 5b of Wang et al. [2013], Figs. 1ab of Merryfield et al. [2013], Fig. 3b of Sigmond213

et al. [2013] and Fig. 8a of Peterson et al. [2015]), however a similar decrease in skill214

between September/October and November/December is seen in some systems [Wang215

et al., 2013; Merryfield et al., 2013; Sigmond et al., 2013].216

We also assessed regional prediction skill for detrended SIE using a mean squared skill217

score (MSSS) metric [Murphy , 1988; Lindsay et al., 2008]. The regional skill differences in218

D R A F T April 21, 2017, 4:33pm D R A F T



X - 12 BUSHUK ET AL.: REGIONAL PREDICTIONS OF ARCTIC SEA ICE

MSSS are broadly consistent with the ACC results, showing highest skill in the North At-219

lantic sector and lower skill in the North Pacific and summer sea-ice regions (See Fig. S4).220

3.2. Sources of Winter Regional Skill: Ocean Temperature Initialization

Next, we consider the physical mechanisms underlying the long-lead regional prediction221

skill for North Atlantic winter SIE. We first note that SIE anomalies in the Barents,222

Labrador, and GIN Seas are more persistent than anomalies in the Bering Sea and Sea223

of Okhotsk (See Fig. S3). This additional persistence contributes to the superior skill of224

North Atlantic SIE forecasts relative to their North Pacific counterparts. A key difference225

between the FLOR predictions and the persistence forecasts is that the FLOR predictions226

remain skillful over the summer initialization months, while persistence does not (compare227

Fig. 2 and Fig. S3 for the Barents, GIN, and Labrador Seas). These summer initialization228

months have little sea-ice coverage and, therefore, require another source of memory to229

provide winter SIE prediction skill. On these 4–11 month timescales, persistent anomalies230

in upper-ocean heat content represent a candidate source for this memory. Indeed, earlier231

work has shown that summer SST anomalies provide an important source of predictability232

for SIE anomalies in the ice-growth season [Blanchard-Wrigglesworth et al., 2011b; Day233

et al., 2014a; Bushuk et al., 2014, 2015; Bushuk and Giannakis , 2015; Sigmond et al.,234

2016; Cheng et al., 2016; Bushuk and Giannakis , 2017]. In order to exploit the intrinsic235

memory of the ocean, the forecast system must be able to initialize and dynamically evolve236

ocean properties through the ice-free summer months and into the ice-growth season. To237

investigate this in the FLOR prediction system, we ask: Is there a relation between winter238

regional SIE and earlier ocean temperature ICs?239
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In Fig. 3 we plot correlation values, as a function of ocean depth and forecast lead240

time, between observed regional SIE and earlier regional-mean ocean temperature ICs.241

We focus on the Barents and Labrador Seas, due to the notably high skill in these re-242

gions. Before computing correlation values, both the SIE and ocean temperature time243

series are linearly detrended. The correlations are plotted for the upper 250m of the244

ocean, which is roughly the depth of the Barents Sea shelf region. The Labrador Sea245

is substantially deeper, but we focus on this upper-ocean region where the temperature246

correlations are strongest. We perform the analysis for regional-mean ocean temperatures247

because temperature anomalies are quite coherent over these regions (typical correlations248

between regional-mean values and spatial-gridpoint values are between 0.6 and 0.9). Using249

regional-mean temperatures allows us to move from four dimensions (latitude, longitude,250

depth, lead time) to two dimensions (depth and lead time), greatly simplifying the anal-251

ysis.252

Physically, one expects upper-ocean temperatures and regional SIE to negatively covary,253

since colder temperatures lead to more extensive sea ice, and vice versa. Indeed, we find254

clear negative correlations between observed winter Barents and Labrador SIE and the255

upper-ocean temperatures used to initialize the forecasts. This indicates that the data256

assimilation system is able to capture interannual fluctuations in surface and subsurface257

ocean temperatures in these regions. While the correlations are negative in both regions,258

their spatial structures are distinct. In the Labrador Sea, the strongest correlations are259

located within the mixed layer, and become surface intensified when the mixed layer shoals260

over the summer months. In contrast, the Barents Sea correlations are strongest beneath261
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the mixed layer for summer initialization months, and regain a surface signature for leads262

corresponding to initialization month May. This correlation structure closely resembles263

the mechanism for mid-latitude SST reemergence [Alexander and Deser , 1995; Alexander264

et al., 1999], in which early-spring SST anomalies are stored beneath the summer mixed265

layer and reemerge to the surface when the mixed layer deepens the subsequent fall/winter.266

By this mechanism, summer subsurface ocean temperature anomalies have the potential267

to impact sea-ice growth rates the following fall/winter.268

The correlation strengths in different target months reflect aspects of the SIE forecast269

skill shown in Fig. 2. In particular, the Barents Sea ocean correlations are weaker for tar-270

get month March, consistent with the drop in skill in this month. Similarly, the Labrador271

Sea skill increases in March, consistent with the stronger temperature correlations at leads272

8 and 9 in this month. Correlations between SIE and temperature ICs are generally lower273

in the Bering Sea and Sea of Okhotsk (See Fig. S5), which is consistent with the lower274

prediction skill in these regions.275

The robust negative correlations in Fig. 3 indicate that the winter SIE forecast skill276

in the Barents and Labrador Seas is partially attributable to accurate initialization of277

upper-ocean temperatures. Due to imperfect observations and model biases, the ocean278

ICs produced by the assimilation system have errors relative to the true observed ocean279

state. Therefore, improving ocean initialization may be a promising route to improving280

winter SIE prediction skill. Indeed, the correlations between ocean temperature ICs and281

model-predicted SIE (See Fig. S6) are substantially higher than the correlations with282

observed SIE reported in Fig. 3. The difference between the model-predicted and observed283
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correlation values represents the potential skill improvements achievable via improved284

ocean initialization (See Fig. S7). The primary difference in these correlations is located285

beneath the summer mixed layer, suggesting a future need for improved subsurface ocean286

observations. Also, we find that the correlations with model-predicted SIE have less287

dependence on the mixed-layer depth than the correlations with observed SIE (compare288

Fig. S6 to Fig. 3). In particular, the Barents Sea correlations have larger values within289

and near the mixed layer, whereas the Labrador Sea displays larger values below the290

mixed layer. This suggests that the correlation structures in Fig. 3 do not necessarily291

reflect fundamental mechanisms of ice-ocean co-variability of this model, but instead may292

be partly associated with assimilation errors and/or model biases.293

3.3. Sources of Summer Regional Skill: SIT Initialization

Next, we consider the sources of summer SIE prediction skill in the FLOR forecast294

system. Earlier work has shown that SIT is an important source of predictability for295

summer SIE on seasonal timescales [Holland et al., 2011; Blanchard-Wrigglesworth et al.,296

2011b; Chevallier and Salas y Mélia, 2012; Lindsay et al., 2012; Day et al., 2014b; Germe297

et al., 2014; Collow et al., 2015; Guemas et al., 2016; Bushuk et al., 2017]. The ECDA298

system does not directly assimilate SIT data, however it may implicitly capture interan-299

nual variations in SIT via its assimilation of atmospheric reanalysis data, which provides300

both thermodynamic and dynamic constraints on SIT. Lacking a long-term observational301

record of SIT, we compare ECDA SIT with the Pan-Arctic Ice Ocean Model and Assimi-302

lation System [PIOMAS; Zhang and Rothrock , 2003], which is an ice-ocean reanalysis that303

agrees quite well with available satellite and in situ SIT observations [Schweiger et al.,304
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2011]. ECDA is biased thin relative to PIOMAS by 0.5–1m, but captures similar interan-305

nual variability in sea-ice volume for all months of the year, with correlations ranging from306

0.92–0.95 for total anomalies and 0.63–0.76 for detrended anomalies. Here, we examine307

the relationship between summer regional SIE and earlier SIT ICs, focusing on the East308

Siberian, Laptev, Beaufort, and Chukchi Seas.309

In Fig. 4, we plot correlations between observed East Siberian Sea SIE and spatial-310

gridpoint values of SIT ICs in earlier months. Correlations are plotted for target months311

of June–September and lead times of 0–4 months. The linear trend is removed from312

both time series before the correlation is computed. We find that the local East Siberian313

SIE–SIT correlations are generally positive, consistent with the physical expectation that314

thicker initial sea ice should lead to more extensive summer sea ice, and vice versa. More-315

over, we find that the SIE–SIT correlations have a diagonal structure that closely resem-316

bles the East Siberian ACC structure in Fig. 2. This diagonal structure implies that317

the SIT initialization month is crucially important in determining East Siberian SIE skill.318

In particular, the East Siberian SIE–SIT correlation values are similar for July lead-0,319

August lead-1, and September lead-2, which each correspond to July-initialized forecasts.320

Similarly, there is a correspondence between July lead-1, August lead-2, and September321

lead-3 (June initialization) and July lead-2, August lead-3, and September lead-4 (May322

initialization). These SIE–SIT correlations suggest that the summer SIE skill in the East323

Siberian Sea is partially attributable to accurate initialization of local SIT anomalies.324

Note that the SIE-SIT correlations using model-predicted SIE are slightly stronger, but325

also display a May prediction skill barrier (see Fig. S8). This suggests that the May bar-326
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rier is primarily related to the inherent predictability of East Siberian SIE, rather than327

resulting from SIT initialization errors.328

SIT initialization also provides an important source of summer prediction skill in other329

Arctic regions with high summer SIE variability. Similar to the East Siberian Sea, we find330

that the SIE–SIT correlations in the Chukchi, Beaufort and Laptev Seas (See Figs. S9,331

S10, and S11, respectively) are consistent with the SIE prediction skill in these regions.332

The Chukchi Sea has SIE prediction skill up to leads of 4 months for target months June333

and July and lower skill for August and September (See Fig. 2). The Chukchi region334

displays strong SIE–SIT correlations for leads 0–4 in June and July, and correspondingly335

lower correlations in August and September (See Fig. S9). The Beaufort and Laptev336

Seas have similar prediction skill barriers to the East Siberian Sea (see the diagonal ACC337

structures in Fig. 2). The SIE–SIT correlations for these regions display a diagonal338

structure consistent with these skill barriers (see Figs. S10 and S11). These results339

demonstrate the importance of SIT ICs for summer SIE prediction and suggest that340

direct assimilation of thickness observations could potentially improve summer prediction341

skill.342

4. Conclusions

This study has examined the seasonal prediction skill for Arctic regional SIE within343

the GFDL-FLOR dynamical forecast system. We have found that prediction skill for de-344

trended regional SIE generally exceeds that of an anomaly persistence forecast. Prediction345

skill is notably high in the North Atlantic sector. Winter/spring Labrador SIE predictions346

are skillful at 7–11 month lead times, and predictions of winter SIE in the Barents and347
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GIN Seas are skillful at 5–9 month lead times. Forecast skill is lower in the North Pacific348

sector, partially due to the lower inherent persistence of regional SIE anomalies compared349

with their North Atlantic counterparts. Summer SIE forecasts are skillful at 1–4 month350

lead times in the East Siberian, Laptev, and Beaufort Seas, and exhibit prediction skill351

barriers in which skill drops off sharply in particular initialization months (May, May, and352

June, respectively).353

We have found that the initial conditions of the GFDL-FLOR prediction system provide354

a crucial source of prediction skill for both winter and summer regional SIE. In particular,355

the high prediction skill for winter SIE in the Labrador and Barents Seas is partially356

attributable to the accurate initialization and persistence of surface and subsurface ocean357

temperature anomalies. Similarly, the summer SIE prediction skill in the East Siberian,358

Laptev, Beaufort, and Chukchi Seas is partially attributable to the accurate initialization359

and persistence of SIT anomalies.360

This study has provided an overview of regional Arctic SIE prediction skill and high-361

lighted some key physical mechanisms underlying this skill. These results demonstrate362

the key role of subsurface ocean and SIT observations in predictions of regional SIE,363

emphasizing the need to both maintain and improve existing Arctic observing systems.364

In addition to higher-quality observations, the route to improved regional predictions365

depends crucially on reducing model biases, optimizing coupled data assimilation tech-366

niques, and understanding the detailed physical mechanisms that impact regional SIE.367

The results of this study motivate future work in regional sea-ice prediction using this368

multi-faceted approach.369
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The effective number of spatial degrees of freedom of a time-varying field, J. Climate,395

12 (7), 1990–2009.396

Bushuk, M., and D. Giannakis (2015), Sea-ice reemergence in a model hierarchy, Geophys.397

Res. Lett., 42, 5337–5345.398

Bushuk, M., and D. Giannakis (2017), The seasonality and interannual variability of399

Arctic sea-ice reemergence, J. Climate, doi:10.1175/JCLI-D-16-0549.1, in press.400

Bushuk, M., D. Giannakis, and A. J. Majda (2014), Reemergence mechanisms for North401

Pacific sea ice revealed through nonlinear Laplacian spectral analysis, J. Climate, 27,402

6265–6287.403

Bushuk, M., D. Giannakis, and A. J. Majda (2015), Arctic sea-ice reemergence: The role404

of large-scale oceanic and atmospheric variability, J. Climate, 28, 5477–5509.405

Bushuk, M., R. Msadek, M. Winton, G. Vecchi, R. Gudgel, A. Rosati, and X. Yang (2017),406

Summer enhancement of Arctic sea-ice volume anomalies in the September-ice zone, J.407

Climate, 30, 2341–2362.408

Cavalieri, D. J., and C. L. Parkinson (2012), Arctic sea ice variability and trends, 1979-409

2010, The Cryosphere, 6 (4), 881–889, doi:10.5194/tc-6-881-2012.410

Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally (1996), Sea ice concentra-411

tions from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version412

D R A F T April 21, 2017, 4:33pm D R A F T



BUSHUK ET AL.: REGIONAL PREDICTIONS OF ARCTIC SEA ICE X - 21

1, NASA DAAC at the Natl. Snow and Ice Data Cent., doi:10.5067/8GQ8LZQVL0VL.413

Cheng, W., E. Blanchard-Wrigglesworth, C. M. Bitz, C. Ladd, and P. J. Stabeno (2016),414

Diagnostic sea ice predictability in the pan-Arctic and US Arctic regional seas, Geophys.415

Res. Lett, 43 (22).416
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Figure 1. The Arctic regions considered in this study.
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Figure 2. Seasonal prediction skill (ACC) for detrended regional Arctic SIE. The trian-

gle and dot markers indicate months in which the ACC values are statistically significant

at the 95% confidence level. Triangles indicate months in which the dynamical model’s

skill exceeds that of a persistence forecast and circles indicate months in which the persis-

tence forecast exceeds the model’s skill. Correlations are only plotted for target months

with SIE standard deviation greater than 0.03 million km2.
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Figure 3. Correlation between observed regional SIE and regional-mean ocean tem-

perature ICs in earlier months. Correlations are plotted as a function of ocean depth and

forecast lead time for the Barents and Labrador Seas and target months of January–March.

The linear trend is removed from both time series before the correlation is computed. The

regional-mean mixed-layer depth climatology is plotted as dashed lines. Correlation values

satisfying |r| > 0.34 are statistically significant at the 95% level.

D R A F T April 21, 2017, 4:33pm D R A F T



BUSHUK ET AL.: REGIONAL PREDICTIONS OF ARCTIC SEA ICE X - 31

r(Observed East Siberian Sea SIE
target month

 , SIT IC
target month − lead

)
L

ea
d

 4
    

L
ea

d
 3

    

L
ea

d
 2

    

L
ea

d
 1

    

 

 

JUN

L
ea

d
 0

 

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

JUL

Target Months

 

AUG

 

SEP

 

Figure 4. Correlations between observed East Siberian (boxed area) SIE and SIT ICs

for different target months and forecast lead times. The linear trend is removed from both

time series before the correlation is computed.
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